Enthalpy of Combustion of Alcohols and carbon atoms

Name

Institution

Course

Professor's Name

Date

Introduction

Rationale

Hydrocarbons such as alcohol have been used as an alternative source of fuel for many decades. As the fossil fuel price increases, there is a need for alternative sources of energy. Alcohol is one method that is environmentally friendly and very effective. The effectiveness of a given alcohol is determined by the enthalpy of combustion. In this exploration, I will investigate carbon atoms impacts the enthalpy of combustion.

Background

The enthalpy of combustion is defined as the amount of heat energy that is given out when one mole of a substance (alcohol) burns in the presence of oxygen (Verevkin et al, 2021). The equation below shows the combustion of alcohol;

Alcohol + oxygen _____ carbon (IV) oxide +water + Heat energy

When alcohol burns in the air carbon (IV) oxide, water, and heat energy is produced. During the combustion of alcohol, heat energy is produced and thus the reaction is an exothermic reaction (Weber et al, 2021). A hydrocarbon is an organic compound that contains oxygen and carbon atoms only (Carey, 2019). Examples of hydrocarbons include; butanol, ethanol, and methanol.

Various alcohol have different numbers of carbons as shown below;

Alcohol	Number of carbon atoms
Methanol	1
Ethanol	2
Butanol	4
Pentanol	5

2

Hexanol	6

Enthalpy heat of combustion increases as the number of carbon atoms within alcohol molecules. As the number of carbon atoms increases, the molecular structure increases, and thus the enthalpy increases.

Aim

The main objective of this exploration is to consider how carbon atoms in primary alcohol impact the enthalpy of combustion. In this exploration, the following alcohols will be investigated; methanol, ethanol, butanol, pentanol, and hexanol.

Hypothesis

During the combustion primary alcohols react with oxygen to produce water, carbon (IV) oxide, and energy. The combustion of alcohol entails the breaking of carbon bonds and forming new bonds with oxygen (Chen& Chen, 2020). As carbon atoms in a primary alcohol increases, the molecular size of the alcohol increases, and thus more energy will be released. Based on this information, therefore, it can be predicted that as the number of carbon atoms escalates in primary alcohols, the enthalpy of combustion will also increase.

Variables

Dependent variable

The enthalpy of combustion of various primary alcohol will be used as a dependent variable in this assessment. The enthalpy of combustion will be computed by measuring the mass of alcohol used to raise the temperature of water by 15^{0} C.

Independent variable

The number of carbon atoms in a carbon molecule will be computed by writing down the molecular structure of the molecule.

Control variable

Table 1: control variable table

Control variable	Impact of the variable	How the variable will be	
		manipulated	
Room temperature	The room temperature	-To have accurate results,	
	dictates the initial	the experiment will be	
	temperature of the water.	conducted in a controlled	
	As the room temperature	environment where the	
	increases, less heat energy	room temperature and	
	will be required to raise the	pressure will be kept	
	temperature of water by	constant.	
	15 ⁰ C and thus affecting the		
	final results		
Volume of water	As the volume of water	-In order to have accurate	
	increases, more heat	and reliable data, the	
	energy will be required to	volume of water used in	
	raise the water temperature	this experiment will be	
	(Sarp et al, 2021). At the	constant (100ml). A	
	same time, minimal heat	measuring cylinder	
	energy will be required		
	when the volume of water		
	is small. Therefore varying		
	volumes of water will have		

	a negative of the final	
	results.	
Calorimeter distance	The distance between the	The distance between the
	burner and the calorimeter	calorimeter and the burner
	does affect the heat energy	will be kept constant
	supplied to the beaker.	throughout the exploration.
		The wick distance should
		also be kept constant to
		ensure the legitimacy of
		the data.
Temperature	The amount of heat energy	The temperature change of
	required to raise the	water will be kept constant
	temperature of water by	$(15^{0}\mathrm{C})$. A mercury
	40 ⁰ C is high compared to	thermometer will be used
	the amount of heat energy	to record the initial and
	required to raise the	final temperature of the
	temperature of water by	water.
	10 ⁰ C. Therefore varying	
	temperatures will provide	
	inaccurate results.	
Water quality	The quality of water will	Pure distilled water will be
	impact the enthalpy	used in this exploration.
	combustion of a given	
	alcohol. When the quality	

	of water is poor, the heat	
	capacity of water increases.	
Same apparatus	Different apparatus such as	-in order to increase the
	calorimeters and	accuracy of data, the same
	measuring scales have	calorimeter and measuring
	varying uncertainty.	scales will be used in this
	Different calorimeters will	experiment.
	have varying heat	
	capacitance and this affects	
	the final results.	
		1

Methodology

Materials

- Glass beaker ($400 \pm 0.5ml$)

-4 oil burners

-500ml distilled water

-100ml of primary alcohol (methanol, ethanol, propanol, and butanol) in burners

-1 lighter

- Mercury thermometer $(100(\pm 0.05^{\circ}))$
- -Digital measuring scale $(\pm 0.01g)$

-copper calorimeter

-1 Measuring ruler (30 \pm 0.1cm)

-2 Tripod Stand

-Cotton wool (for insulation purposes)

-measuring cylinder

Procedure

- 1. Gather all the materials listed above this will ensure easier access to equipment.
- 2. Place the copper calorimeter on top of the tripod stand.
- 3. Measure 100ml of water using a measuring cylinder. Place the water into the calorimeter and cover the colorimeter with the lid to ensure there is no heat loss.
- 4. Measure and record the initial mass of the burner containing methanol.
- 5. Place the burner below the tripod stand and adjust the distance between the lamp and the calorimeter to 5cm (this distance will be controlled throughout the entire experiment).
- 6. Open the lid of the lamp and light up the burner using the lighter provided. Start reading the thermometer reading until the temperature difference is 15^{0} C.
- 7. Measure the final mass of the lamp and record the data.
- 8. Find the amount of fuel used to raise the amount of water by 15° C.
- 9. Repeat steps 2-9 two more times to ensure the accuracy and consistency of data.
- 10. Repeat steps 2-10 using other primary alcohols provided.
- 11. Compute the enthalpy of combustion of each alcohol and present the data in a graph.

Risk assessment

Safety

-There were considerable risk issues in this exploration. All the alcohols used are highly flammable and thus no direct flame should be used.

Environmental factors

During the combustion of alcohol, carbon (IV) oxide is given out. Carbon (IV) is a greenhouse gas that is causing global warming and climate change. In this exploration however, the amount of alcohol used is very small and thus the amount of carbon (IV) oxide released into the atmosphere is very small.

Ethical issues

There were no ethical considerations in this exploration since no living organism was used.

Results

Raw data

Alcohol	Trial 1		Trial 2		Trial 3	
	Initial mass	Final mass	Initial	Final	Initial	Final
	(g)	(g)	mass (g)	mass (g)	mass (g)	mass (g)
Methanol	56.23	55.70	55.72	54.61	52.61	50.50
Ethanol	82.61	81.98	81.98	80.42	80.42	78.89
Butanol	87.59	88.15	88.15	86.56	86.54	85.01
Pentanol	64.09	61.97	61.97	60.68	60.68	59.61
Hexanol	75.75	75.02	75.01	74.12	74.14	73.17

Table 2: raw data table

Sample calculation

The mass of fuel used

To calculate the mass of the fuel (acid) used, the following method will be applied;

mass of fuel used (g) = intial mass (g) - final mass(g)

mass of fuel used (g) (methanol = 58.23(g) - 55.70(g) = 0.53g

The same method was applied to find the mass (g) of the fuel used to raise the temperature of water to 40^{0} C.

Alcohol	Trial 1	Trial 2	Trial 3
Methanol	0.53	1.11	2.11
Ethanol	0.63	1.56	1.53
Butanol	1.05	1.59	1.53
Pentanol	2.12	1.29	1.07
Hexanol	0.73	0.89	0.97

Table 3: mass of the fuel used

Average fuel used:

$$Mean = \frac{Trial(1) + Trial(2) + Trial(3)}{3}$$

$$Mean (methanol) = \frac{0.53 + 1.11 + 2.11}{3} = 1.25g$$

Enthalpy

In order to compute the enthalpy of each alcohol, the following steps will be used;

Moles

To find the moles of the alcohol used;

$$Moles = \frac{mass}{molar mass}$$

Consider the moles of ethanol;

The molar mass can be computed by looking at the molecular structure of the alcohol;

C_2H_6O

RMM = (C, H, and O);

RMM of C (carbon) =12.01

RMM of H (hydrogen) =1.01

RMM of O (oxygen) =16.00

RMM = 2(12.01) + 6(1.01) + 16.00 = 46.08

Moles of ethanol;

 $Moles = \frac{1.24g}{46.08} = 0.027 \ moles$

The following method is used to find the specific heat capacity of ethanol;

heat capacitor = $m * c * \Delta T$

Where;

m = mass of fuel used

c = water capacitance (4.184kJ/mole)

 ΔT =Change in temperature (15^oC)

heat capacitor = 1.24g * 4.184 * 15 = 77.82J

To find the enthalpy of combustion, the following method is applied;

 $enthalpy of \ combustion = \frac{heat \ change}{moles \ of \ ethanol \ used}$

 $enthalpy of \ combustion = \frac{77.82}{0.027} = -2891.98 \ j/mol$

Since the process is an exothermic reaction (heat is given out), a negative sign is used;

The table below summarises the processed data from this experiment;

Table 4: processed data table

Alcohol/fuel	Carbon Chain	Average in mass	Enthalpy of combustion Kjmol ⁻¹
Methanol	1	1.25	2010.83
Ethanol	2	1.24	2891.98
Butanol	4	1.39	4651.83
Pentanol	5	1.49	5532.29
Hexanol	6	0.86	6411.69

Data analysis

Based on the data from the above table, it can be noted that as the number of carbon increases, the enthalpy of combustion also increases. When methanol (1 carbon atom) was used, the enthalpy of combustion was -2010.83 Kjmol⁻¹. As the carbon atoms increases to 4 (butanol), the enthalpy of combustion was -4651.83 Kjmol⁻¹. When hexanol (6 carbon atoms) was used, the enthalpy of combustion was 6411.69 Kjmol⁻¹. The data from the above table can be used to develop the following graph;

Based on the graph it can be noted that as the number of carbon rises, the enthalpy of combustion also rises. There is a direct link between carbon atoms and the enthalpy of combustion. The line of best fit from the chart above indicates an upward trajectory indicating that there is a direct link between the variables. The coefficient correlation indicates a perfect association thus confirming that there is a positive link existing between the carbon chain and the enthalpy of combustion. The equation from above graph is;

y = 880.24x + 1130.7 where gradient is positive indicating that indeed there is positive association between variables.

Conclusion

Summary

The main objective of this assessment was to investigate how the number of carbon atoms in various hydrocarbons impacts the enthalpy of combustion. It was predicted that "as the number of carbon atoms escalates in primary alcohols, the enthalpy of combustion will also increase". From the data collected in this exploration it can be noted that as the number of carbon rises, the energy produced during combustion also increases and thus confirming my

hypothesis. A graph showing the number of carbon atoms and enthalpy of combustion has a linear link confirming that there is a positive link between the variables. Based on this information, therefore, it can be concluded that there is a negative link between carbon atoms and the enthalpy of combustion.

Evaluation

The exploration was successful although there were some errors incurred during the experiment. The experiment was conducted in a controlled environment where the oxygen supply was limited. As a result, the combustion was incomplete, and thus less energy was released. In order to evade this error in the future, it is vital for the experiment to be conducted in a large room that is well-ventilated.

Extension

In future experiments, it is vital to consider other hydrocarbons such as alkanoic acids. The research question should be "How does the number of carbon atoms in alkanoic acids affect the enthalpy of combustion?

Reference

- Carey, F. A. (2019). Hydrocarbon. In *Encyclopædia Britannica*. https://www.britannica.com/science/hydrocarbon
- Chen, W. H., & Chen, C. Y. (2020). Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. *Applied Energy*, 258, 114078.
- Sarp, S., Hernandez, S. G., Chen, C., & Sheehan, S. W. (2021). Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. *Joule*, *5*(1), 59-76.
- Verevkin, S. P., Konnova, M. E., Zherikova, K. V., & Pimerzin, A. A. (2021). Sustainable hydrogen storage: Thermochemistry of amino-alcohols as seminal liquid organic hydrogen carriers. *The Journal of Chemical Thermodynamics*, 163, 106591.
- Weber, J. K., Razavi, M. R., Carniglia, P., & Gülder, O. L. (2021). Comments on the Experimental Study of the Combustion and Emission Characteristics of Lower Alcohols in a Constant Volume Vessel. *Energy & Fuels*, 35(15), 12753-12757.